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Abstract 

The intensities of the weak superlattice reflections in the 
UX 3 compounds, where X = Ru, Rh, Ge, and Sn, have 
been measured by neutron diffraction. These com- 
pounds have the ordered A u C u  3 structure. Excellent 
fits to the observed intensities are obtained by intro- 
ducing anisotropic second-order and fourth-order 
(anharmonic) terms to describe the probability distri- 
bution function at the X atom site. The ratio of the 
magnitude of the mean-square thermal vibration 
parallel to and perpendicular to the unique tetragonal 
axis of the X atom appears to depend on whether p 
bonding (UGe 3, USn 3) or d bonding (URu  3, URh3) 
occurs with the U electrons. In UGe 3 data out to 
Q = 13 A -1 show the need to include a fourth-order 
anharmonic term. The form of this anharmonicity 
suggests an attractive potential between the nearest- 
neighbor U-X atoms. 

I. Introduction 

Neutron diffraction is particularly well suited to the 
determination of accurate thermal parameters because 
the neutron-nuclear interaction exists over a very short 
range. This means that nuclear scattering extends to 
high I QI, the momentum transfer, where the effects of 
thermal motion are readily apparent. One hopes, 
therefore, to extract reliable thermal parameters from 
neutron measurements without the need for corrections 
for the form factor, anomalous dispersion, and ab- 
sorption, which complicates X-ray studies. Atomic 
thermal parameters are invariably considered within 
the harmonic approximation, although the observation 
that solids expand contradicts this assumption. How- 
ever, higher-order corrections to the harmonic approxi- 
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mation, which give information about the restoring 
potentials in the solid, are usually small and difficult to 
establish from elastic scattering experiments. To per- 
form such analyses, diffraction data of high precision 
are required out to large values of I QI = 4nsin 0/2, 
where 0 is the Bragg angle and 2 the radiation 
wavelength. An excellent survey of such measurements 
is given by Willis (1969). 

In this paper we report on neutron diffraction studies 
of URu 3, URh 3, UGe 3, and USn 3 at room temperature 
(and below for UGe3). Our original motivation for 
studying UGe 3 was to determine the scattering ampli- 
tudes and thermal parameters to use in processing the 
results of a companion polarized-neutron study (Lan- 
der, Reddy, Delapalme & Brown, 1980). The study 
with unpolarized neutrons demonstrated strikingly the 
importance of an anisotropic second-order term in the 
Debye-Waller factor of the Ge atom. To our know- 
ledge such an effect has not been previously reported in 
this common structure. We then studied the other 
materials and undertook a search for higher-order 
anharmonic effects. 

II. Experimental details 

All experiments discussed here have used conventional 
four-circle neutron diffractometers. At Argonne 
National Laboratory we used a Be (11.0) reflection with 
20M= 55 ° to give a wavelength of 1-05/k. Neutron 
experiments at the Institut Laue-Langevin used the D9 
diffractometer on the hot source. A Cu mono- 
chromator reflecting from the (200) planes was used to 
give a wavelength of 0.84 A. 

Single crystals in the shape of cylinders (about 2-3 
mm in diameter and about 10 mm long) were 
examined. To minimize the variation of the neutron 
path length through the crystal, data were collected in 
such a way as to keep the scattering vector more than 

© 1981 International Union of Crystallography 



J. FABER JR, G. H. LANDER,  P. J. BROWN AND A. DELAPALME 559 

60 ° from the long axis of the cylinder. Usually up to 
50% of the total equivalent set of reflections could be 
measured; these were then averaged, corrected for 
absorption (appreciable for URh 3 only), and geometric 
effects. The agreement within equivalent sets was 
always good and the error bars in the figures 
correspond to standard deviations. 

The most significant experimental difficulty is con- 
nected with second-order (2/2) contamination. In the 
AuCu 3 structure there are two types of structure 
factors, the fundamental set corresponding to face- 
centered lines (i.e. h,k,l  all even or all odd) or the 
so-called superlattice lines with h,k,l  mixed indices. For 
the" generic formula UX a the fundamental structure 
factor is b U + 3b x, neglecting thermal parameters, 
whereas the superlattice structure factor is b o - - b  x. As 
we shall see, the fundamental intensities are between 
102 and 104 stronger than the superlattice ones. At 
every superlattice position the 2/2 contribution from a 
fundamental reflection contributes, and therefore must 
be reduced or eliminated. At ANL we used a 2a9pu filter 
and measured Io(2/2)/Io(A ) -- 4 x 10 -4, where I 0 refers 
to an incident intensity. This value resulted in correc- 
tions of ~20% for the low-angle reflections in UGe 3, 
but rapidly decreased with increasing Q, and negligible 
corrections for the other compounds. At ILL an Er 
filter of 1 mm was sufficient to eliminate completely the 
2/2 component. 

III. Analytical expressions 

The atomic structure of these compounds is the A u C u  3 

(L12) type (Fig. 1), space group P m 3 m  (No. 221) with 
the atoms in positions 

U 1 (a) m 3 m  000 

1 1 11  X 3 (c) 4 / m m m  0½½,~0~,-~0. 

The treatment of Willis (1969) is confined to point 
groups having cubic symmetry, in which case the 
concept of a constant potential at a given radius vector 
is useful. However, for point groups of lower symmetry 

t~ii! ?ii: : i . . . .  

Fig. 1. AuCu s structure of all four UX 3 compounds discussed in 
this paper. The U atoms (shaded circles) are at the cube corners 
and the X atoms (open circles) are at the face-centered positions. 

it is more useful to consider the general form of the 
probability density function, as given for example by 
Johnson (1970). 

The probability density function may be expanded as 

~,(t; ~:, %:, 3 K ,  4 K , . . . )  

_ _  2KJk 3KJkl = exp i IKJ t j  + 2! t j t  k + - -  t j  t k I l + " ' "  , 

3! 

where sK are cumulant tensors of rank s and t is the 
atomic position vector with components t j, t k, etc. 
Symmetry will then immediately allow us to define the 
number of terms, the harmonic approximation being 
equivalent to terminating the expansion at the second- 
order tensor 2K. From Table 9.1 of Johnson (1970) we 
then have 

1K 2 K 3 K 4 K 

U m 3 m  0 1 0 2 

X 4 / m m m  0 2 0 4 .  (1) 

The absence of odd-order terms simply reflects the fact 
that both point groups are centrosymmetric. 

To determine the exact form of the cumulant tensors 
it is convenient to use Tables 4 a - f  in Birss (1964). We 
are interested in polar tensors so that for the U site 
(m3m) the tensors a re  T 2 and T 4, and for the X site 
( 4 / m m m )  they a r e  O 2 and H 4. Following Birss (1964), 
and performing the necessary Fourier transform into 
reciprocal space (Willis & Pryor, 1975), the relevant 
second-order thermal parameters are 

flU(hi hi + h 2 h2 + h a h3) 

and 

f lX(h 1 h I + h 2 h 2) + fiX(h a ha). (2) 

The scattering vector Q is expanded into its three 
components 

Q = 2n(h I a* + h 2 a~ + h a a~'), 

where a~' are the reciprocal-lattice basis vectors. 
Expression (2) gives the familiar temperature factors in 
the harmonic approximation. Since the z axis is defined 
as the unique axis in the tetragonal point group this 
expression refers explicitly to the atom at 1 1  (~0) .  The 
term flu is related to the isotropic uranium temperature 
factor B U so that 

8~z 2 
4a 2 flu = Bc = - ~  (U2)u ' 

where (u2)u is the mean-square displacement of the U 
atom. We see, therefore, that the term flla for the X 
atom refers to harmonic motion within the plane of the 
nearest-neighbor fourfold coordination of U atoms, 
whereas the fl33 term refers to motion perpendicular to 
this plane towards the vacant position ~111~ 
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For the fourth-order terms we must consider tensors 
T 4 and H a of Birss (1964). The T 4 tensor gives two 
parameters 8 ° and 8~ 

8~(h 4 + h 4 + h a) + 382(h~ hi + hi h32 + h ] h21). (3) 

These parameters 8~ and 82 can be related to the 
parameters 7 and 6 of Willis [1969; see equation 
(4.11)], and will define a potential as shown in Fig. 4 of 
Willis (1969) with lobes pointing along the (100)  or 
(111)  directions. 

For the X atom, four independent parameters are 
required to determine the anharmonic potential. Accor- 
ding to the tensor H a the expression is 

81(h 4 + h  4 ) + 8  2h 4 + 3 8 3 h ~ h ~ + 3 8 4  2 2 h3(h ~ + h~). (4) 

A simplification occurs if 82 = 84 = 0 and ~3 = --8~ 
since the fourth-order term then becomes 

5 4 81(h 4 + h a -- 3h~ h~)=  ~8~r[h ~ + h42 _35(h~2 + h~)2] (5) 

and 8xy is related to the term 8 defined by Willis (1969) 
except that the modulation of the potential is now 
within the (001) plane. 

The atomic positions in the AuCu 3 structure are 
such that the structure factors fall into two groups. 

(i) Fundamental  reflections with h, (= h), h2 (= k), 
and h 3 ( = l )  all even or all odd with the nuclear 
structure factor 

Fy=  b U Tu(Q) + 3b x Tx(Q) , (6) 

where b U and bx are the nuclear scattering potentials of 
the U and X atoms, respectively, and Tu(Q) and Tx(Q) 
are the corresponding thermal parameters. For small 
I QI, both T o and T x are near unity and with b u and b x 
both positive these reflections are strong and relatively 
insensitive to the exact form of T(Q). 

(ii) The superlattice reflections with mixed indices 
have a nuclear structure factor 

Fs = by Tu(Q) - bx Tx(Q). (7) 

If  we can arrange b o ~_ b x then the reflection intensity 
will be weak but very sensitive to the exact form of 
T(Q). 

I V .  R e s u l t s  a n d  a n a l y s e s  

UGe 3 

Since the most extensive measurements have been 
taken on UGe3, we shall discuss this first. The 
refinement results are summarized in Table 1, and the 
individual fits illustrated in Figs. 2-5. Fig. 2 shows the 
importance of the cancellation occurring in (7). Notice 
first that the scale is logarithmic. The intensities of the 
weak superlattice reflections a r e  , - ,10 -4  of the strong 
fundamental reflections. The latter suffer from ~ 15% 

Table 1. Results o f  refinements o f  superlattice 
reflections fo r  UGe 3 

a = 4.206A, b u = 0.852 + 10-1am, bGe = 0-819 x I0 -14 m, 
B u = 0.28A 2 at 290 K and 0.15A 2 at 150 K. S is the scale 
factor depending on instrumental constants, flH and fl33 are defined 
for the Ge atom as in (2). 6xy for Ge is defined in (5). Z 2 is defined 
in the text. 

Data set S (x 10 -4) (x 10 -4) (x 10 -s) 2 '2 

ANL 293 K 165 + 12 59 + 3 80 + 4 0 1.4 
ANL 293 K 171 + 12 55 + 3 78 + 4 3-0 + 0-8 0.8 
ILL 293 K 67 + 7 49 + 3 63 + 5 0 2-4 
ILL 293 K 80 +_ 7 44 + 2 56 + 2 0.94 + 0-14 1.2 
ILL 150 K 57 + 4 26 + 1 37 + 2 0.33 + 0.09 0.9 

extinction, the corrected intensities falling nearly on a 
straight line as a function of Q2, and are not affected 
within the present precision by either the second- or 
fourth-order terms in T(Q). The superlattice reflections 
increase in intensity with increasing I QI because the 
thermal vibration of the Ge atom is greater than that of 
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Fig. 2. Observed (open points) structure factors plotted against 
h 2 + k 2 + 12 = a 2 Q2(4n2)-~ for UG% for the A N L  data set. The 
solid circles correspond to the strong fundamental  reflections 
after extinction corrections, the solid line defining their cal- 
culated position. The solid triangles are the calculated structure 
factors for the weak superlattice reflections. The dashed curve 
corresponds to t h e  v a l u e s  expected i f  ~i1 = ~33 a n d  ~xy = O. 
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uranium. However,  the anisotropy in the observed 
structure factors is a direct consequence  of  fl,~ #: fl33 in 
(2). 

The usual crystallographic least-squares analysis 
does not include fourth-order terms in the temperature 
factor so we have written a program explicitly for the 
A u C u  a structure incorporating these effects. One 
immediately obvious fact is that the weak reflections 
alone are sufficient to define fl]~/f133 and the 6 

parameters to a high degree of  precision. The strong 
reflections, taken together with the weak, define b u / b G e  
and, to a certain extent, the absolute values of  fl]~ and 
B u. In our studies of  U G e  3 we are unable to reconcile 
the ratio ( F / / F s ) e =  o with the accepted scattering lengths 
of  0 .843  and 0 . 8 1 9  x 10 -~4 m for U and Ge,  
respectively. Assuming  the value for Ge is correct, we 
require b u = 0 . 8 5 2  x 10 -14 m, as opposed to the value 
of  (0 .843  +_ 0 .002 )  x 10 -~4 m given by Cooper,  Sakata 
& Rouse  (1979).  Fortunately,  the present investi- 
gations are n o t  dependent on accurate scattering 
lengths since they may be thought of  as analyzing the 
d i f f e r e n c e s  about the dashed line (as in Fig. 2) as a 
function of  Q. 

In Fig. 3 we plot IFol - -  IFcl v e r s u s  the same 
quantity h 2 + k 2 + 12. Fig. 3(a) is a refinement with no 
fourth-order term. The X 2 is 1.4 for this refinement, 
where 

X z = (m - -  n)- '  Z {(IFol - -  IFcl)/AFo} z. 

F o and F~ are observed and calculated structure factors, 
respectively, A F  o is the standard deviation in F o, m is 
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Fig. 3. Difference structure factors for UGe 3 (ANL 293 K) 
superlattice reflections versus h 2 + k = + 12. The fourth-order term 
is included in (b), X = = 0.8, but not in (a), X 2 = 1.4. 

the number of  reflections, and n the number o f  
variables. The least-squares program minimizes X 2. The 
addition of  a fourth-order term 6xy (see equation 5) for 
the Ge atom resulted in a significant reduction in X 2. 
This additional parameter clearly improves the agree- 
ment at high Q. 

The results for refinements of  data taken at the ILL 
out to high IQI at 293 and 150 K are shown in Figs. 4 
and 5, and the parameters are given in Table 1. Since 
the ILL data extend to higher Q values than those at 
A N L ,  they should be more reliable. In both sets we find 
f133/fll~ > 1, the actual value of  this ratio at 293 K being 
1.42 + 0 .08  from the A N L  data and 1.27 + 0 .05  from 
the ILL data. The fourth-order term 6xy is also positive 
in both cases and results in a decrease in X 2. There is 
some deviation in the absolute values, possibly as a 
consequence  of  systematic errors. We have also 
performed a number of  analyses on the ILL data to 
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Fig. 4. Structure factors vs h 2 + k 2 + l 2 for superlattice reflections 
for UG% (ILL 293 K). The open points are from experiment, the 
closed triangles are from the calculation. The horizontal dashed 
line is the approximate lower level of observation; note 
logarithmic scale. 

E 

6 

0 . 1 5 - -  UGe3l 
ILL,D9 
150K 

o ~0 x :  0 84~ 
0 09 - -  

0 08 - -  

0 0 7  - -  

o06-- 

005i-- 

00~ ~ 

0 0 ~  - -  

00~ - -  

I I I I I I 

} } ~  - 

• ! -  
• - -  

t I - 

Fig. 5. Same as Fig. 4 but at 150 K. As in Fig. 4 reflections with 
intensities lower than the dashed horizontal line could not be 
measured reliably, but their calculated structure factors (solid 
triangles) are always small. 

I I I 
IO 20 30 

h z + / d  + / 2 

] i  
£ 2 - -  

40 50 60 70 



562 T H E R M A L  P A R A M E T E R S  IN U X  3 C O M P O U N D S  

vary 6i (i = 1-4) in (4). These did not give significant 
improvements in X 2. Allowing all 6i's to vary gave 
significant values for 61 = (1.2 + 0.3) x 10 -S and 63 = 
( - 0 . 8  + 0.2) x 10 -5 only, and it was on this basis that 
we set 63 = -61  = ~xy. Furthermore, no significant 
fourth-order term was found for the U atom. As a 
further test of the significance of the 6xy term, we have 
examined the correlation matrix in the refinement 
involving S, fl11, ~33' and 6xy (in Table 1). The 
correlations between S and the second-order thermal 
coefficients flH and fla3 are high (>0 .9 ;  this correlation 
may be reduced by also using the strong reflections in 
the refinement), but none of the parameters are 
correlated with 6xy more than 0.4. 

The absolute values of both the flii coefficients and 
6xy decrease as the temperature is reduced to 150 K. 
This is as expected; in fact ft ,  oc T and 6~y ~ T 3 
(approximately) from theory, and within the rather 
poor statistics of the data we do see a faster decrease of 
6~y than fl~i. Of  course, these expectations are strictly 
valid only at higher temperatures when the zero-point 
motion is insignificant. An interesting trend is that the 
ratio f133/flll appears independent of temperature, 
reflecting presumably this tendency for the zero-point 
motion as well. In a separate experiment designed to 
examine selected reflections we verified that this is 
indeed the case even at 4.2 K, and this information was 
used in processing the polarized-beam experiments 
(Lander et al., 1980). 

USn 3 

The results for USn 3 are shown in Fig. 6. With both 
strong and weak reflections shown in Fig. 6 we obtain 
excellent agreement (R factor 1.9%) with complete 
stoichiometry and B u = 0.71 + 0.03 A 2 for the U 
temperature factor. The complete parameters are given 
in Table 2. Within the accuracy of the data  &xy--0. 
Since b v - b s n  is fairly large, the weak reflections 
appear to behave 'normally '  on a logarithmic plot 
versus Q2, i.e. they decrease. Note, however, the 
substantial scatter about the dashed line in Fig. 6, 
which shows directly the presence of anisotropic 
thermal motion at the Sn site. 

URu3 and URh 3 

The results for URu 3 and URh 3 are shown in Figs. 7 
and 8, respectively, and are also given in Table 2. 

In the eases of URu3 and URh3, the method of 
producing these crystals by electron-beam zone refining 
leads to highly perfect crystals which exhibit very large 
extinction effects. We have discussed this point at 
length in a study of URh 3 with polarized neutrons 
(Delapalme, Lander & Brown, 1978). In the present 
work we have not measured the strong fundamental  
reflections, but, as discussed earlier, this does not affect 
the parameters of Table 2. The superlattice reflections 
are too weak to suffer extinction effects. 

We note immediately in Table 2 that for both URu  3 
and URh 3 the ratio f133/flll < 1, in contrast to the 
situation for UGe 3 and USn3. With the data and Q 
range examined we find no significant fourth-order term 
in either URu 3 or URh 3. 

IC 

-L-- o ~ 

I I I I I 

~ - -  ~ ~ - - ~ - ~  . . . . .  

0 1 I I _ I I 
,0 20 30 40 50 

h2 + l d  + l 2 

Fig. 6. Observed structure factor (open points) and calculated 
values (solid line for fundamental and closed triangles for 
superlattice) for USn 3 as a function of h 2 + k 2 + l 2. The dashed 
line indicates the expected values for the superlattice reflections if 
the thermal motion of the Sn atom was isotropic. 

Table 2. Results of  refinements for U X  3 systems 

The parameters are as in Table 1, with fltt, fl33, and 6xy referring to the X atom. To compare B U with flit the effective temperature factor is 
given by B = 4a 2 flii. 

a bx BU fill ~33 ¢~Xy 
(A) (x 10 -l') (A 2) (x 10 -4) (x 10 -4) ~33/~11 (X 10 -s ) X 2 

URu3 3.980 0.721 0.25 42 + 1 40 + 1 0.95 + 0.04 0 + 0-7 0.6 
URh 3 3.988 0.584 0.25 51 + 1 39 + 1 0.76 + 0.04 --1 + 1.0 1.2 
UGe 3 4.206 0.819 0.28 44 + 2 56 + 2 1.27 + 0.05 0.94 + 0.14 1.2 
USn 3 4.626 0.622 0.71 80 +_ 3 100 + 3 1.25 + 0.07 -1  + 3 0.8 



J. FABER JR, G. H. LANDER, P. J. BROWN AND A. DELAPALME 563 

6 

t.,_ 

(a) 

OJ15 

0110 

0.002 
t~ 

-7-  
- -  0 
t~ 

-0.002 

(b) 
Q 

• • 

- - 0 - -  
O 0  ~"-0 - - - ' 0  

• 0 0 • 

J I _L___ 
10 20 30 

h 2 + k 2 + / 2 

Fig .  7. (a)  O b s e r v e d  s t r uc tu r e  f ac to r s  for  U R u  3 as  a func t ion  o f  
h 2 + k 2 + 12; (b) the  d i f fe rence  11:ol  - IFcl ; no te  the  d i f ferent  
o rd ina t e  scales .  

0.35 - -  

0.30 
E 

8 

025 

020~ 

+004 

+002 

t~. ta 

'_2_ 0 

-002 

-0.04 

T 1 r [ T - -  
(a) 

i l  
- -  1 t l i l i  t t 

(b) 

-6-e- e e -  e e -  • e -  8 8 -  ~ e - o ~  8 ~  - | - -  

10 20 30 
h 2 + k 2 +/2 

Fig.  8. O b s e r v e d  s t ruc tu re  f ac to r s  as  a func t ion  o f  h 2 + k 2 + l 2 for  
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V.  D i s c u s s i o n  

In these experiments we have measured the weak 
superlattice reflections from a number of uranium 
compounds with the AuCu3 ordered structure. The 
results show quite clearly the need to consider 
anisotropic thermal vibrations at the X atom site in all 
cases. To our knowledge this simple fact, which is 
permitted by symmetry, has not been reported here- 
tofore, no doubt partly because of the difficulty of 
measuring these reflections. The structure factors are in 
all cases < 0.3 × 10 -14 m per formula unit and for 
UGe 3 are much smaller. Accordingly, the intensities are 
similar to those of acoustic phonons and we require an 
integrated intensity accurate to ~10%. The most 
serious experimental difficulty is the elimination of 
second-order contamination. Another potential prob- 
lem arising from thermal diffuse scattering (TDS) is not 
serious. The reason for this is that TDS arises 
principally from one-phonon scattering associated with 
the acoustic modes of vibration and at the superlattice 
reciprocal-lattice points the low-energy acoustic modes 
are out-of-phase acoustic phonons. Their structure 
factor is correspondingly very small. TDS does arise 
from optic phonons, which will have a large structure 
factor at the reciprocal-lattice points of interest, but 
they are at 2-4 THz in energy, and the scattering 
conditions are such that they will not be sampled in our 
experiments. Another problem is the possibility of 
partial lattice disorder in the AuCu 3 structure. We have 
no evidence from our experiments that these are not 
ordered stoichiometric compounds. This is further 
reinforced by the observation of de Haas-van Alphen 
effects in both U R h  3 (Arko et al., 1975) and UGe 3 
(Arko & Koelling, 1978) and this effect cannot be 
observed if disorder is present in the crystals. 

We believe the change in magnitude of fla3/fl]] 
between URu 3 and URh 3 on the one hand, and UG% 
and USn 3 on the other, shows the importance of 
bonding effects on the interatomic restoring potentials. 
The outermost electrons in Ge and Sn are in p states 
and their interaction with the outermost 5f-5d 
electrons of the U atom will be predominantly along the 
(110) directions. As a result a strong (001) network is 
formed (see Fig. 1) between an X atom and its four 
nearest neighbors, and this qualitatively predicts 
fla3/flll > 1, as observed. On the other hand, the 
outermost electrons in Ru and Rh are 4d states that 
give rise to potentially strong n-type bonding with the U 
states, consistent with f133/fl]~-< 1. Of course, these 
arguments are far too simple to have other than 
qualitative validity in these complex systems, and 
detailed considerations of the interatomic potentials 
involving the basis wavefunctions are now in progress 
at Argonne National Laboratory (Koelling, 1980). 

In one material, UG%, we have found evidence for a 
fourth-order term in the thermal parameter of the Ge 
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atom. However, from Table 2 we see that the 
anharmonic parameter in UGe 3 is similar in magnitude 
to the error bars on 6xy of the other materials. Thus, in 
UGe a it seems probable that the availability of higher-Q 
data and the almost complete cancellation of b u and 
bee give greater sensitivity, rather than 6xy being 
especially significant in UGe 3. 

We now examine the significance of these higher- 
order terms in the thermal parameters. The latter are, of 
course, related to the potential acting on a given atom 
so that higher-order terms signify anharmonicity (i.e. 
the restoring potential can no longer be regarded as 
proportional to the square of the atomic displacement 
from the mean position). It should be realized at the 
outset that the thermal parameters are an ensemble 
average over the total potential energy of the crystal, 
considered as a collection of coupled anharmonic 
oscillators. To draw physical significance from the 
parameters we must make the assumption that the 
system can be treated as a collection of independent 
anharmonic oscillators. Furthermore, the problem of 
writing down a tractable potential is feasible only if we 
follow Willis (1969) and adopt the high-temperature 
(classical) limit. In the case of cubic symmetry Willis 
(1969) has shown that the potential to fourth order can 
be written in the form 

l /r(Ul U 2 U3) = V 0 -t- ½ar 2 + ~4 + flu 1 u2 u3 

+ 6( u4 + u4 + u4--s3r4a,, (8) 

where ul, u 2, and u 3 are Cartesian coordinates, r 2 = u~ z 
+ uz 2 + u ], a is the coefficient of the harmonic potential, 
and the other terms give the anharmonic contribution. 
The anisotropic term in 6 represents the influence of the 
local crystalline field in producing an angular depen- 
dence of the potential and is written in such a way that 
the average value over the surface of a sphere is zero. 
In principle, one could develop an expression similar to 
(8) for the tetragonal point-group symmetry of interest 
here, but this is very tedious, and will introduce a 
number of normalization conditions that make it 
difficult to identify the isotropic and anisotropic parts 
of the fourth-order potential. 

Since the point-group symmetry is centrosymmetric, 
fl = 0, but we must introduce two parameters a,, and ct± 
which refer to the harmonic (second-order) potential 
parallel and perpendicular to the local tetragonal axis, 
respectively. Similarly for the fourth-order terms new 
terms in y should be introduced, but the experimental 
evidence is for a modulation of the potential in the 
(001) plane, and thus we equate all y's to zero. The 
anisotropic term in 6 must then average to zero over 
the circumference of a circle and can readily be shown 
to be of the form 6(u ] + u 4 - 6u z u~). The full potential 
is then of the form 

2 u~) + V(u, u, u3) = v0 + ~a~(u,  + ~a,, u] 

+ 6(u 4 + u 4 - 6 u ~  uz2). (9) 

By following Willis (1969; §4.2), we arrive at the 
following form for the temperature factor of the X 
atom: 

exp {-Wx(Q)} = exp -Qx2y 2a----~- - Q~ 2a,, J 

× {1 - ( k s  T) a (27t/a) 4 (6/a])  

x (h 4 + h42-6hEh~)}, (10) 

where a is the lattice parameter, kB the Boltzmann 
constant, T the absolute temperature, Q2xy = (27r/a) 2 (h 2 
+ h~), and Q~ = (2re/a) 2 hi. 

Comparison with (2) shows that 

flll = (27~2/a2) k~ T/a± 

#33 = (2~r2/a2) k~ T/a, 

and with fl~ = (44 + 2) x 10 -4 , fl33 = (56 _+ 2) × 10 -4 
and T = 293 K, 

a± = 10.3 × 10-19j A -2 

all = 8.1 × 10 -19 J A -2. 

The anisotropic fourth-order term bears a close 
resemblance to (5) except for the coefficient of h lh  2 , 2  2 
which is 6 rather than 3. This is then a special case of 
(4), in which the second- and fourth-order contri- 
butions to the potential are separated, and, under these 
conditions, 6 = (160 + 30) × 10 -19 J /k  -4. 

The anharmonic contribution is reduced at low 
temperature and, using (10) for the temperature factor, 
we find at 150 K that 6 _~ 200 × 10 -19 J A -4 so that the 
reduction of the anharmonic term is approximately as 
T 3. Further quantitative examination of this point 
would require a treatment beyond the classical limit 
(Dawson, 1970), especially since the Debye tempera- 
ture for most of these materials is between 200 and 300 
K (van Maaren, van Daal & Buschow, 1974), and our 
model assumes T > O o. 

By restraining the temperature factor as in (10) we 
are able to separate the second- and anisotropic 
fourth-order parts of the potential as shown in (9). To 
visualize the significance of these parameters we have 
mapped out the radial dependent part of the potential of 
(9) in Fig. 9 in the (xz) and (xy) planes. The most 
striking feature is the softening of the potential in the 
[110] direction, i.e. there is a partially attractive 
potential in the direction o f  the U-Ge  nearest neighbor. 
In assessing the significance of these potential maps one 
should bear in mind not only the approximations 
discussed above, but also the absolute magnitudes of 
the atomic displacements. For example, the square root 
of the mean-squared deviation (u2) ~/2 = 0.065/k,  
whereas we illustrate the potential out to 0.15 A. 
Nevertheless, our analysis does suggest a softened 
potential in the U-Ge  direction and Fig. 9 is an attempt 
to represent this qualitatively. 
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In conclusion, we have shown the presence of both 
second-order anisotropic and fourth-order terms in the 
thermal parameters of the X atom in a series of U X  3 
systems. We anticipate these effects in other AB 3 
systems. Indeed, experiments on CeSn 3 (Loong, Stassis 
& Faber,  1980) have shown that in this interesting 
compound f133/fl~ ~- 1.60, i.e. larger than the values in 
Table 2. Preliminary experiments on AuCu  3 itself 

~q 
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d 

040 

(a) 

t~ 
cq 

/ ~ 

><. ._  o, 

I~l aXIS f~XI5 

Fig. 9. Schematic representation of the potential function around 
the Ge atom at room temperature; the units of distance are A and 
of potential are arbitrary. The origin of these figures refers to the 
Ge atom at 11 (:~0) in Fig. 1; (a) the (xz) plane; and (b) the (xy) 
plane. 

(Faber, Lander & Brown, 1980) have shown that 
whereas ~33//]11 ~ 1, the fourth-order terms are larger 
than seen in any other system examined. Such an effect 
may have an important bearing on the microscopic 
interactions driving the order-disorder  transition in 
AuCu 3. 
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